
1 A comparison of Rybka 1.0 Beta and Fruit 2.1

This document is designed to a reference guide to various technical elements
in the discussions with Rybka 1.0 Beta and Fruit 2.1. In some sense, it is a
prequel to the Rybka/IPPOLIT analysis. However, the issues considered are not
really the same. The claims made about Rybka/IPPOLIT were of a sufficiently
different nature to those about Rybka/Fruit that a different type of discussion
seems necessary. [This document is the version of January 26, 2011].

1.1 Evidence, and standards therein

This document shall outline the evidence regarding Rybka 1.0 Beta and Fruit 2.1,
and try (at times) to put it into context. In particular, one must make a choice
of standard of comparison. Many have been suggested, such as “code” copying,
or “copyright” considerations. It is my opinion, however, that the proper stan-
dard to use is that which is commonly used in the context of computer chess
(or more generally, computer boardgames). This has, at least historically, been
construed to mean that no code which has a demonstrative influence on the per-
formance of the programme in question may be borrowed from a competitor. In
some sense then, this guide is directed at a hypothetical tournament arbitrator
who has been asked to determine whether Rybka 1.0 Beta is sufficiently original
to allow it to be in the same event as Fruit 2.1.1 The previous decisions in this
genre include that of the case between Berliner and Hsu, where the latter agreed
to remove/rewrite approximately 0.3% his codebase (some sort of simulation of
the Cray Blitz evaluation function) due to the fact that it had been taken from
the HITECH project at an earlier time.

Furthermore, this document is fundamentally incapable of anticipating even
legitimate explanations of the evidence here enumerated, and as such, is more
of a call to further conversation than the final word.

2 Outline of the evidence

There are various major points of evidence between Fruit 2.1 and Rybka 1.0
Beta, and a number of minor and/or more circumstantial ones. The major
points of evidence include:

• the same type of PST-scheme re-using the File/Rank/Line weighting;

• the use of exactly the same evaluation features;

• the ordering of operations at the root node in the search.
1 Just to recapitulate, this means that I am not going to consider GPL or copyright infring-

ment issues, and I also disregard any statement from a representative of either Fruit/Rybka
concerning their opinion of the matter (after all, from the standpoint of a tournament director,
two “competitors” could be colluding so as to gain multiple entries to an event — this was
actually an issue 20+ years ago, but hopefully those days are past us!).

1

The lesser pieces of evidences include:

• the re-apperance of some similarities in data structures in hashing;

• the re-appearance of 10-30-60-100 scaling in some evaluation numerology;

• some commonality of UCI parsing code, including a spurious “0.0” float-
based comparison in the otherwise integer-based time management code
of Rybka.

Some of these could be considered to be “ideas” rather “code” for various
purposes; while the standard I adopt here makes some nuance between the two,
it is not so strict so as to demand any re-appearance of any specific code or
numerology.

It must be said that what is “fair game” to re-use from an open source
programme is not entirely clear. For instance, pursuant to the second major
point of above, one of the more notable “ideas” of Fruit was its evaluation
based mainly on mobility. In an appendix, I compare the components of this
evaluation routine to those used in Rybka 1.0 Beta. While a large match is
found, it is certainly possible to argue that the Fruit source code can be taken
as a “manual” for chess programming (perhaps in the sense of a modern version
of “How Computers Play Chess”), and if this paradigmatic view is taken, then
the re-use of the same evaluation components should not be seen as too derelict.

3 Common structure of PST computations

The first major point is that of Piece-Square-Table (PST) computations, also
known as “static” values. This occurs directly in the code in Fruit 2.1, while in
Rybka 1.0 Beta, we only see the end result.2 Furthermore, there is a rescaling
(centipawns versus 3399th pawns), and Rybka also uses different weightings for
some parameters.

However, the use of various specific arrays is apparent in both Fruit 2.1 and
Rybka 1.0 Beta. It is not immediately obvious how to judge their re-occurence;
for instance, the use of [−2,−1, 0,+1,+1, 0,−1,−2] for a file weighting can
hardly be considered abnormal. The impetus of the evidence is that: the identi-
cal arrays are used by both Fruit 2.1 and Rybka 1.0 Beta for each piece, giving
a total of 8 or so matching arrays (some of the arrays are themselves re-used,
but the occurrence of each with a specific piece is an exact match in Fruit 2.1
and Rybka 1.0 Beta). There are minor differences, such as bonuses for central
pawns, and that the KingRank array is unimportant in Rybka 1.0 Beta (due to
the weighting for it being 0).3

2 I might stress that the fact that Fruit 2.1 visibly computes these while Rybka 1.0 Beta
just has an array is not really relevant for the discussion here. The content is of more import.

3 Similarly one could note that Rybka 1.0 Beta has a score for pawns in the endgame and
queens in the opening, while in Fruit these are all just zero (the second is explicitly 0 in the
source code, while the first is not). The existence of these “zero weights” makes drawing
schematic diagrams a bit tricky, and prone to possible reliance on non-existent similarities.

2

3.1 The example of the knights

I give one example in fuller detail. For various reasons, the (white) knights are
the best, as there are two components (file and rank), and there are is only one
minor variation (the a8/h8 square).

Here are the raw PST white knights values for Fruit 2.1 and Rybka 1.0 Beta
in the opening, the latter on the bottom.

Table 1: Fruit 2.1 White Knight Opening PST values

-135 -25 -15 -10 -10 -15 -25 -135
-20 -10 0 5 5 0 -10 -20
-5 5 15 20 20 15 5 -5
-5 5 15 20 20 15 5 -5

-10 0 10 15 15 10 0 -10
-20 -10 0 5 5 0 -10 -20
-35 -25 -15 -5 -5 -15 -25 -35
-50 -40 -30 -25 -25 -30 -40 -50

Table 2: Rybka 1.0 Beta White Knight Opening PST values

-5618 -1724 -1030 -683 -683 -1030 -1724 -5618
-1366 -672 22 369 369 22 -672 -1366
-314 380 1074 1421 1421 1074 380 -314
-325 369 1063 1410 1410 1063 369 -325
-683 11 705 1052 1052 705 11 -683

-1388 -694 0 347 347 0 -694 -1388
-2440 -1746 -1052 -705 -705 -1052 -1746 -2440
-3492 -2798 -2104 -1757 -1757 -2104 -2798 -3492

The co-incidence of these can be seen when we make a formulaic represen-
tation (omitting the left-right symmetry).

Table 3: Common PST schematic for white knights in the opening

−4x− 4x+ y − z −4x− 2x+ y −4x+ 0 + y −4x+ x+ y · · ·
−2x− 4x+ 2y −2x− 2x+ 2y −2x+ 0 + 2y −2x+ x+ 2y · · ·

0− 4x+ 3y 0− 2x+ 3y 0 + 0 + 3y 0 + x+ 3y · · ·
x− 4x+ 2y x− 2x+ 2y x+ 0 + 2y x+ x+ 2y · · ·
x− 4x+ y x− 2x+ y x+ 0 + y x+ x+ y · · ·
0− 4x+ 0 0− 2x+ 0 0 + 0 + 0 0 + x+ 0 · · ·
−2x− 4x− y −2x− 2x− y −2x+ 0− y −2x+ x− y · · ·
−4x− 4x− 2y −4x− 2x− 2y −4x+ 0− 2y −4x+ x− 2y · · ·

By using (x, y, z) = (5, 5, 100) we obtain the values for Fruit 2.1, and with
(x, y, z) = (347, 358, 3200), we obtain those for Rybka 1.0 Beta. All the numbers
(as opposed to letters) in the above array appear in the Fruit 2.1 source code.

static const int KnightLine[8] = { -4, -2, +0, +1, +1, +0, -2, -4 };
static const int KnightRank[8] = { -2, -1, +0, +1, +2, +3, +2, +1 };

3

Other than the left-right symmetry in the Line array, there is no particular
reason for these numbers to be used. For instance, we could write αf and βr

for the file and rank numbers (where f ranges over files and r over ranks), and
the above array then looks like:

Table 4: PST schematic with Line/Rank arrays as parameters

α18x+ αahx+ β8y − z α18x+ αbgx+ β8y α18x+ αcfx+ β8y α18x+ αdex+ β8y · · ·
α27x+ αahx+ β7y α27x+ αbgx+ β7y α27x+ αcfx+ β7y α27x+ αdex+ β7y · · ·
α36x+ αahx+ β6y α36x+ αbgx+ β6y α36x+ αcfx+ β6y α36x+ αdex+ β6y · · ·
α45x+ αahx+ β5y α45x+ αbgx+ β5y α45x+ αcfx+ β5y α45x+ αdex+ β5y · · ·
α45x+ αahx+ β4y α45x+ αbgx+ β4y α45x+ αcfx+ β4y α45x+ αdex+ β4y · · ·
α36x+ αahx+ β3y α36x+ αbgx+ β3y α36x+ αcfx+ β3y α36x+ αdex+ β3y · · ·
α27x+ αahx+ β2y α27x+ αbgx+ β2y α27x+ αcfx+ β2y α27x+ αdex+ β2y · · ·
α18x+ αahx+ β1y α18x+ αbgx+ β1y α18x+ αcfx+ β1y α18x+ αdex+ β1y · · ·

Here we should have αah = α18, etc., but I rewrote the subscripts to indicate
which was a rank element, and which was a file element. Admittedly, this
formulation tends to stress the identical nature of the α and β choices made by
Fruit 2.1 and Rybka 1.0 Beta, but indeed, that is the whole point.

3.1.1 Magnitude of this evidence

The magnitude of this evidence can be weighed is various ways. It must be first
be noted that, while the use of these two File/Line arrays is not too strange,
the identical arrays appear for every piece, and so mere coincidence is unlikely.
A second question is whether the arrays really matter, when the x and y values
could be said to have as much influence on the PST values.4 My answer to
that would be that there is no reason to keep the Rank/Line scaling, and in a
fully independent implementation of the Fruit “idea” of PST, I would definitely
expect them to differ at some points.5 Finally, there is the issue of whether
these arrays could re-appear for “harmless” reasons, but I really can’t say much
more than I have already.

3.2 Diagrams for other pieces

For reasons of completeness, I give the schematic PST pictures for the other
cases, noting the values chosen by Rybka 1.0 Beta and Fruit 2.1. For all of these,
the array choice is the same; the exception is the KingRank array in Rybka, as
the value is chosen as zero, so the contents of the array are meaningless.

4 A silly counterpoint to this could be that the arrays contain 12 numbers (though not all
are really “independent”, as one fully expects the numbers to be higher at the centre than at
the edge), which is a lot more than the 3 values x, y, z.

5 I might say that this is especially true given the re-scaling done by Rybka 1.0 Beta to
use 3399ths of a pawn rather than centipawns – why should the Rank/Line array values stay
small (single digits), and the x, y values grow? But this is perhaps trying to read minds. . .

4

3.2.1 Pawns PST

Table 5: Common PST schematic for white pawns

−3x −x 0 x · · ·
−3x −x 0 x · · ·
−3x −x 0 x · · ·
−3x −x 0 x? · · ·
−3x −x 0 x? · · ·
−3x −x 0 x? · · ·
−3x −x 0 x · · ·
−3x −x 0 x · · ·

Fruit 2.1 takes x = 5 in the opening, and x = 0 in the endgame. Rybka 1.0
Beta takes x = 181 in the opening, and x = −97 in the endgame. Fruit adds 10
to d3/e3/d5/e5 and 20 to d4/e4, while Rybka adds 74 to d5/e5.

static const int PawnFile[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

My personal impression is that if the above were the totality of the evidence, it
would be dismissible (the grid does not look that odd), but when in the context
of everything else, it becomes more pressing. It can also be noted that many (if
not most) other chess programmes have some sort of dependence on the rank
in Pawn PST.

3.2.2 Knights PST endgame

Table 6: Common PST schematic for knights in the endgame

−4x− 4x −4x− 2x −4x+ 0 −4x+ x · · ·
−2x− 4x −2x− 2x −2x+ 0 −2x+ x · · ·

0− 4x 0− 2x 0 + 0 0 + x · · ·
x− 4x x− 2x x+ 0 x+ x · · ·
x− 4x x− 2x x+ 0 x+ x · · ·
0− 4x 0− 2x 0 + 0 0 + x · · ·
−2x− 4x −2x− 2x −2x+ 0 −2x+ x · · ·
−4x− 4x −4x− 2x −4x+ 0 −4x+ x · · ·

This is essentially the same as the Knights in the opening, except that the
rank bonus (the y-variable of before) is absent, as is the a8/h8 penalty. Fruit 2.1
takes x = 5 while Rybka 1.0 Beta takes x = 56. As before, the main content
here is not the general “centralisation”, but the exact weightings from

static const int KnightLine[8] = { -4, -2, +0, +1, +1, +0, -2, -4 };

5

3.2.3 Bishops PST

Table 7: Common PST schematic for white bishops

−3x− 3x+ y −3x− x −3x+ 0 −3x+ x · · ·
−x− 3x −x− x+ y −x+ 0 −x+ x · · ·
0− 3x 0− x 0 + 0 + y 0 + x · · ·
x− 3x x− x x+ 0 x+ x+ y · · ·
x− 3x x− x x+ 0 x+ x+ y · · ·
0− 3x 0− x 0 + 0 + y 0 + x · · ·
−x− 3x −x− x+ y −x+ 0 −x+ x · · ·

−3x− 3x+ y − z −3x− x− z −3x+ 0− z −3x+ x− z · · ·

Fruit 2.1 has (x, y, z) = (2, 4, 10) in the opening and (x, y, z) = (3, 0, 0) in the
endgame. Rybka 1.0 Beta has (x, y, z) = (147, 378, 251) and (x, y, z) = (49, 0, 0).

The principal x-weighting is the same as with PawnFile/QueenLine/KingLine.

static const int BishopLine[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

One might expect some of these to be re-used, but the fact that Rybka 1.0 Beta
and Fruit 2.1 use the exact same arrays in the exact same places makes this
of more import. Furthermore, Rybka 1.0 Beta has the same type of penalties
(BackRank/Diagonal) as Fruit 2.1 in the opening (in fact, it might have been
better to make two separate grids for opening/endgame, to show that both have
y = z = 0 for the endgame values).

3.2.4 Rooks PST

Table 8: Common PST schematic for rooks (opening)

−2x −x 0 x · · ·
−2x −x 0 x · · ·
−2x −x 0 x · · ·
−2x −x 0 x · · ·
−2x −x 0 x · · ·
−2x −x 0 x · · ·
−2x −x 0 x · · ·
−2x −x 0 x · · ·

This one is almost so mundane as to pass without comment. Fruit 2.1 has x = 3
and Rybka 1.0 Beta has x = 104, and both have x = 0 in the endgame.

static const int RookFile[8] = { -2, -1, +0, +1, +1, +0, -1, -2 };

Again the principal query would be as to why was this RookFile chosen in both,
as opposed to (say) re-using the PawnFile array instead.

6

3.2.5 Queens PST

Table 9: Common PST schematic for white queens

−3x− 3x −3x− x −3x+ 0 −3x+ x · · ·
−x− 3x −x− x −x+ 0 −x+ x · · ·
0− 3x 0− x 0 + 0 0 + x · · ·
x− 3x x− x x+ 0 x+ x · · ·
x− 3x x− x x+ 0 x+ x · · ·
0− 3x 0− x 0 + 0 0 + x · · ·
−x− 3x −x− x −x+ 0 −x+ x · · ·

−3x− 3x− z −3x− x− z −3x+ 0− z −3x+ x− z · · ·

This one is a bit tricky, as Fruit has a zero value for QueenCentreOpening,
though it is explicitly in the code. And again (see Bishops) there is a BackRank
penalty only in the opening (in both). Fruit 2.1 has (x, z) = (0, 5) in the opening
and (x, z) = (4, 0) in the endgame, while Rybka 1.0 Beta has (x, z) = (98, 201)
in the opening and (x, z) = (108, 0) in the endgame. Again having a separate
grid for the endgame might make the BackRank penalty more clear.

static const int QueenLine[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

3.2.6 Kings PST

Table 10: Common PST schematic for white kings (opening)

3x− 7y 4x− 7y 2x− 7y 0− 7y · · ·
3x− 6y 4x− 6y 2x− 6y 0− 6y · · ·
3x− 5y 4x− 5y 2x− 5y 0− 5y · · ·
3x− 4y 4x− 4y 2x− 4y 0− 4y · · ·
3x− 3y 4x− 3y 2x− 3y 0− 3y · · ·
3x− 2y 4x− 2y 2x− 2y 0− 2y · · ·
3x+ 0 4x+ 0 2x+ 0 0 + 0 · · ·
3x+ y 4x+ y 2x+ y 0 + y · · ·

Again there is a somewhat of a stretch here in making a common schematic,
as Rybka 1.0 Beta doesn’t have the adjustment for KingRankOpening, so the
y-variable of above only appears in Fruit 2.1. However, the file array does match.

static const int KingFile[8] = { +3, +4, +2, +0, +0, +2, +4, +3 };

Fruit 2.1 has (x, y) = (10, 10) and Rybka 1.0 Beta has (x, y) = (469, 0).
The schematic in the endgame, and the KingLine array used for it, are the

same as with bishops and queens above (based on centralisation). Fruit 2.1 has
x = 12 and Rybka 1.0 Beta has x = 401.

static const int KingLine[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

7

4 Commonality of evaluation features

Most of the work here has been done by Zach Wegner. The crux of the conclusion
is that Rybka 1.0 Beta and Fruit 2.1 have exactly the same evaluation features.
I will simply enumerate these here without much comment, as in almost all
cases, the functionality is the same.

4.1 Piece evaluation

4.1.1 Bishops

Both Rybka and Fruit consider only mobility as the primary evaluation compo-
nent with bishops. Both Rybka and Fruit have a trapped bishop penalty; the
same definition of “trapped” is used in each (translated to bitboards with Rybka
of course), though the penalty is halved in Fruit in one case. Both Rybka and
Fruit have a blocked bishop penalty for (say) a bishop on c1, a friendly pawn
on d2, and an enemy piece on d3. Both Rybka and Fruit halve the overall evalu-
ation in an opposite-colour bishop endgame when the number of pawns for each
side differ by no more than 2 (both have a flag for such a bishop endgame in a
material table, and then separately check if the bishops are oppositely coloured).

4.1.2 Knights

Both Rybka and Fruit consider only mobility as the primary evaluation compo-
nent with knights.

4.1.3 Rooks

Both Rybka and Fruit consider mobility, open files, semi-open files, whether the
opposing king is on a semi-open file, and a 7th rank bonus. With the 7th rank
bonus, both Rybka and Fruit require the opponent to have: either pawns on
the seventh rank, or the king on the eighth rank. Both Rybka and Fruit have
a penalty for a blocked rook, and as with bishops, the definition is exactly the
same.

Overall, the only real difference for rooks is in the computation of an “open
file” – when a rook is in front of a friendly pawn (wRa3/wPa2 for instance),
Fruit does not consider this to be “open”, but Rybka does.

4.1.4 Queens

Both Rybka and Fruit consider mobility for queens, and a 7th rank bonus. With
the 7th rank bonus, both Rybka and Fruit require the opponent to have either:
pawns on the seventh rank, or the king on the eighth rank.

4.2 King Safety

Both Rybka and Fruit compute king safety by computing whether a piece (ig-
noring pawns and kings) attacks a square adjacent to the opponent’s king. For

8

each such piece, a counter is incremented, and a score is added based on what
the piece is. For instance, in Fruit the KingAttackUnit is 1 for minors, 2 for a
rook, and 4 for a queen. In Rybka these are 941, 418, 666, and 532.

4.2.1 King Shelter/Storm

Both Rybka and Fruit compute pawn shelter/storm for a king based upon three
adjacent files (I don’t think this idea is that new in Fruit, so I will not discuss
the details much). Rybka uses a look-up table of patterns, while Fruit does bit-
scanning. Fruit has a consideration with castling potential, while Rybka does
not. There are likely as many differences as similarities here.

4.3 Pawn Evaluation

Both Rybka and Fruit consider doubled pawns, isolated pawns (on open/closed
files), backward pawns (again on open/closed files), detection of passed pawns,
and candidate passed pawns. This is all fairly standard, though I don’t think
this exact choice had appeared before Fruit. The definition of “backward” is
slightly different in Rybka, as is a slight nuance with candidate pawns. The
similarity of relative numerology in candidate/passed pawns is discussed below.

4.3.1 Passed Pawns

Both Rybka and Fruit start with a raw bonus for a passed pawn, depending on
the game phase and the rank. There are then various bonuses for a passed pawn
being dangerous. When the opponent has no pieces, an unstoppable passer is
highly rewarded. When there are pieces, Fruit gives a bonus if all the following
are true: the opponent does not (currently) have any pieces blocking it, we are
not blocking it, and the pawn can advance safely (via SEE). Rybka splits up
these bonuses in a piecemeal fashion, and considers not only the square directly
in front of the pawn, but all those until the promotion square (and SEE is not
specifically used).

Both Rybka and Fruit give a bonus depending upon the distances of both
kings to square in front of the pawn. The bonus in Fruit is solely based on the
distance, while the rank of the pawn is included in Rybka.

The similarity of relative numerology for passed pawns is discussed more
below, but here I mention that the relative scaling for each is essentially 10-30-
60-100, though done in units of 256. In some sense, this is the most trenchant
piece of evidence with passed pawns, as the other components either have slight
variations in Rybka or are not “original” in Fruit.

4.4 Interpolation

Both Rybka and Fruit interpolate “opening” and “endgame” values to get a final
evaluation. Fruit’s is linear, while Rybka’s is a bit more complicated. Again
this component could be considered a reasonable “idea” to take from Fruit in
any event, but it is just one piece of evidence among many.

9

5 Identical procedures in root search

The underlying factualities here are taken from Zach Wegner’s analysis that is
given at http://talkchess.com/forum/viewtopic.php?t=23118.

Table 11: Root search operations in Fruit and Rybka

Fruit 2.1 Rybka 1.0 Beta
generate legal moves generate legal moves
limit depth to 4 if #moves is 1 limit depth to 4 if #moves is 1
setup setjmp setup setjmp
list/board copy
reset/start timer start timer
increment date and date/depth table increment date and date/depth table
reset killers then history (sort init) reset killers then history
copy some Code()/UCI params
score/sort root list score/sort root list

Here are the comparative operations and their ordering in Phalanx XXII (for
example): generate legal moves, init killers/history, increment Age, setup time
limits, sort root moves, start timer, return move if forced (there are various bits
about book/learning that I omit).

The Fruit/Rybka overlap would already likely meet a “plagiarism” standard,
for instance as used in the detection of non-original work in academia and/or
book publishing (note that plagiariam is generally an ethical standard and not
a legal one). There is also the question of how important this item is.

6 Things of lesser importance

6.1 Data structures with hashing

The first 64 bits of the hash structure in Rybka and Fruit are used in the same
manner. I can find no other engines that use this – even Fruit 1.0 differs (having
a 64-bit lock). The common parts are:

a 32-bit lock, 16 bits for the move, 8 bits for depth, and 8 bits for depth.
To choose a random comparison, Faile orders these as [hash, depth, score, move]
with differing bit widths.

6.2 Use of a quad()-like function for passed pawns

6.2.1 The quad() function in Fruit 2.1

Bonus[Rank4] = 26; // 10.15625%
Bonus[Rank5] = 77; // 30.078125%
Bonus[Rank6] = 154; // 60.15625%
Bonus[Rank7] = 256; // 100%

int quad(int y_min, int y_max, int x)
{return y_min + ((y_max - y_min) * Bonus[x] + 128) / 256;}

10

http://talkchess.com/forum/viewtopic.php?t=23118

This is the quad() function in Fruit 2.1, with ASSERTs stripped out, and the
Bonus values above made explicit, with my comment about percentage of 256.

As can be seen, this function uses approximately a 10-30-60-100 weighting,
given instead by hexapawns as 26-77-154-256. Also, the function rounds (with
the +128) to the nearest integer, rather than just trunctating in division by
256. The only difference between the values that quad() returns and those of
the arrays including in Rybka 1.0 Beta are that the latter seems to truncate
rather than round.

Fruit 2.1 uses these for a number of passed pawn eval components. In every
case, when a pawn on a given rank has a specific attribute, the quad() returns
the score to be applied in the evaluation.

static const int PassedOpeningMin = 10;
static const int PassedOpeningMax = 70;
static const int PassedEndgameMin = 20;
static const int PassedEndgameMax = 140;
static const int AttackerDistance = 5;
static const int DefenderDistance = 20;
static const int CandidateOpeningMin = 5;
static const int CandidateOpeningMax = 55;
static const int CandidateEndgameMin = 10;
static const int CandidateEndgameMax = 110;

There are also 2 other constant bonuses, the first of which is also a constant in
Rybka 1.0 Beta, while the second is divided up into more cases and given the
quad()-style weighting based on rank.

static const int UnstoppablePasser = 800; // always 800 in Fruit 2.1
static const int FreePasser = 60; // always 60 in Fruit 2.1

Not all of these terms have exactly the same meaning in Rybka 1.0 Beta, and
discussing any differences would diverge from my focus on the re-use of quad()
function. Perhaps the main difference is with FreePasser, as to whether the
pawn’s path is met by a friendly or enemy piece.

6.2.2 Passed pawn numerology in Rybka 1.0 Beta

As noted above, Fruit calls quad() every time, while one can note that the
values are only dependent on the rank, and then use precomputation to get
arrays values as in Rybka 1.0 Beta. The elements of the arrays in Rybka 1.0
Beta are not direct outputs of the quad() function in Fruit 2.1, but up to
rounding (note the “+128” in the code above), this is indeed the case.

Here are the values in the arrays for Rybka 1.0 Beta, indexed by rank:

int PassedOpening[8] = { 0, 0, 0, 489, 1450, 2900, 4821, 4821 };
int PassedEndgame[8] = { 146, 146, 146, 336, 709, 1273, 2020, 2020 };
int PassedUnblockedOwn[8] = { 0, 0, 0, 26, 78, 157, 262, 262 };
int PassedUnblockedOpp[8] = { 0, 0, 0, 133, 394, 788, 1311, 1311 };

11

int PassedFree[8] = { 0, 0, 0, 101, 300, 601, 1000, 1000 };
int PassedAttDistance[8] = { 0, 0, 0, 66, 195, 391, 650, 650 };
int PassedDefDistance[8] = { 0, 0, 0, 131, 389, 779, 1295, 1295 };
int CandidateOpening[8] = { 0, 0, 0, 382, 1131, 2263, 3763, 3763 };
int CandidateEndgame[8] = { 18, 18, 18, 181, 501, 985, 1626, 1626 };

Perhaps the most obvious “sore-thumb” is the PassedFree array, which looks
mighty close to 100-300-600-1000, but is off-by-one in two entries. Indeed, this
is accounted for exactly by the “hexapawns” rescaling. Here are inputs to a
quad()-like function (with different rounding) to produce the Rybka arrays.

PassedOpening: Min = 0, Max = 4821
PassedEndgame: Min = 146, Max = 2020
PassedUnblockedOwn: Min = 0, Max = 262
PassedUnblockedOpp: Min = 0, Max = 1311
PassedFree: Min = 0, Max = 1000
PassedAttDistance: Min = 0, Max = 650
PassedDefDistance: Min = 0, Max = 1295
CandidateOpening: Min = 0, Max = 3763
CandidateEndgame: Min = 18, Max = 1626

6.2.3 Impact of this evidence

It is fairly clear (particularly with the PassedFree array) that the values in
Rybka 1.0 Beta were generated automatically, and not by hand. The use of
quad()-like function is not sufficiently generic for its output to be considered
commonplace (in computer chess or otherwise).

The counterpoint to this is whether the use of quad() is really all that
important. At one level, the numbers used in an evaluation function certainly
do have an impact on playing strength of an engine. On the other hand, it can
be said that Rybka is basically using the 10-30-60-100 scaling “idea” (not all
that novel), with a choice of weights that is not too similar to that of Fruit.

Finally, it can be noted that the quirky 256-based scaling seems to be done for
a reason in Fruit 2.1 (as the quad() function is called every time, perhaps general
integer division would be too slow), while when the array is pre-computed as in
Rybka, it is a bit inscrutable to me why the direct 10-30-60-100 scaling would
not be preferable.

6.3 UCI parsing

Finally there is the subject of UCI parsing. Some of this is not precisely “chess-
related”, though there is overlap with time management issues, and as a side-
point, the disassembly of the code itself (from Rick Fadden) already shows the
obfuscation of depth in Rybka via subtracting 2.

12

6.3.1 Parsing the “position” string

A first hint of copying is apparent in how Rybka parses the “position” string.
The Fruit code has various oddities, such as

moves[-1] = ’\0’; // dirty, but so is UCI
A disassembly of the Rybka code shows a similar hack.
Here is the stripped-down Fruit code:

fen = strstr(string,"fen ");
moves = strstr(string,"moves ");
if (fen != NULL) {

if (moves != NULL) { // "moves" present
moves[-1] = ’\0’; // dirty, but so is UCI

}
board_from_fen(SearchInput->board,fen+4); // CHANGE ME
// else use startpos -- omitted here
if (moves != NULL) { // "moves" present

ptr = moves + 6;
while (*ptr != ’\0’) { // until string is terminated

// some code to get the move_string
move = move_from_string(move_string,SearchInput->board);
move_do(SearchInput->board,move,undo);
while (*ptr == ’ ’) ptr++; // eliminates spaces

}

Here is a Rybka decompilation from Franklin Titus.
int __usercall sub_4092E0<eax>(const char *a1<eax>)
{
char *v1; // esi@1
const char *v2; // esi@1
char *v3; // edi@1
int v4; // esi@6
int v5; // eax@7
v2 = a1;
v3 = strstr(a1, "fen");
v1 = strstr(v2, "moves");
sub_403490(); // board_from_fen, for startpos
if (v3) // fen != NULL
{
if (v1) // moves != NULL
*(v1 - 1) = 0; // moves[-1] = 0, compiler would not do this on own

sub_403490(); // board_from_fen for actual fen -- maybe sub_403490(v3)?
}
if (v1) // "moves" present
{
v4 = (v1 + 6); // ptr = moves + 6
while (*v4) // until string is terminated
{

13

v5 = sub_40AAF0(v4); //
sub_40ABC0(v5); // some code to get the move_string
v4 += 5; // Fruit increments on each character (*ptr++)
if (!*(v4 - 1)) // the -1 here is likely compiler-based
break; // i.e. v4[4] is the same as (v4 + 5)[-1]

for (; *v4 == 32; ++v4) // eliminates spaces
;

}
}
return sub_401100();

}

The most interesting part is likely that moves[-1] reappears in the Rybka code,
while I’m still not sure of its exact purpose in the Fruit code.

6.3.2 Time management

Referring to Rick Fadden’s disassembly efforts available from TalkChess at
http://www.talkchess.com/forum/viewtopic.php?p=187290, there are var-
ious other common elements between Fruit and Rybka that can be mentioned
here. The most notable is (the naming of variables is his):

// Rybka compares movetime with a double precision value: 0.0
if (movetime >= 0.0) {
time_limit_1 = 5 * movetime;
time_limit_2 = 1000 * movetime;

} else if (time > 0) {
time_max = time - 5000;
alloc = (time_max + inc * (movestogo - 1)) / movestogo;
if (alloc >= time_max) alloc = time_max;
time_limit_1 = alloc;
alloc = (time_max + inc * (movestogo - 1)) / 2;
if (alloc < time_limit_1) alloc = time_limit_1;
if (alloc > time_max) alloc = time_max;
time_limit_2 = alloc;

}

The Fruit code in comparison is

if (movetime >= 0.0) {
SearchInput->time_is_limited = true;
SearchInput->time_limit_1 = movetime * 5.0; // HACK to avoid early exit
SearchInput->time_limit_2 = movetime;

} else if (time >= 0.0) {
time_max = time * 0.95 - 1.0;
if (time_max < 0.0) time_max = 0.0;
SearchInput->time_is_limited = true;
alloc = (time_max + inc * double(movestogo-1)) / double(movestogo);

14

http://www.talkchess.com/forum/viewtopic.php?p=187290

alloc *= (option_get_bool(‘‘Ponder’’) ? PonderRatio : NormalRatio);
if (alloc > time_max) alloc = time_max;
SearchInput->time_limit_1 = alloc;
alloc = (time_max + inc * double(movestogo-1)) * 0.5;
if (alloc < SearchInput->time_limit_1) alloc = SearchInput->time_limit_1;
if (alloc > time_max) alloc = time_max;
SearchInput->time_limit_2 = alloc;

}

As noted by Zach Wegner and others, the comparison with a floating-point
value in Rybka is simply bizarre in itself, and only when put side-by-side with
the Fruit code (for which it makes sense) does the genesis of this come to light.
The multiplication of “time limit 1” by 5 is another common element. Further
similarities could be mentioned, but it not so clear how important they really
are.

15

